Core Mathematics 4 Paper C

1. A curve has the equation

$$
x^{2}(2+y)-y^{2}=0 .
$$

Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
2. Show that

$$
\begin{equation*}
\int_{1}^{2} x \ln x \mathrm{~d} x=2 \ln 2-\frac{3}{4} . \tag{5}
\end{equation*}
$$

3.

The diagram shows the curve with equation $y=2 \sin x+\operatorname{cosec} x, 0<x<\pi$.
The shaded region bounded by the curve, the x-axis and the lines $x=\frac{\pi}{6}$ and $x=\frac{\pi}{2}$ is rotated through four right angles about the x-axis.

Show that the volume of the solid formed is $\frac{1}{2} \pi(4 \pi+3 \sqrt{3})$.
4. (i) Express

$$
\frac{4 x}{x^{2}-9}-\frac{2}{x+3}
$$

as a single fraction in its simplest form.
(ii) Simplify

$$
\begin{equation*}
\frac{x^{3}-8}{3 x^{2}-8 x+4} . \tag{5}
\end{equation*}
$$

5. A bath is filled with hot water which is allowed to cool. The temperature of the water is $\theta^{\circ} \mathrm{C}$ after cooling for t minutes and the temperature of the room is assumed to remain constant at $20^{\circ} \mathrm{C}$.

Given that the rate at which the temperature of the water decreases is proportional to the difference in temperature between the water and the room,
(i) write down a differential equation connecting θ and t.

Given also that the temperature of the water is initially $37^{\circ} \mathrm{C}$ and that it is $36^{\circ} \mathrm{C}$ after cooling for four minutes,
(ii) find, to 3 significant figures, the temperature of the water after ten minutes.

Advice suggests that the temperature of the water should be allowed to cool to $33^{\circ} \mathrm{C}$ before a child gets in.
(iii) Find, to the nearest second, how long a child should wait before getting into the bath.
6. A curve has parametric equations

$$
x=3 \cos ^{2} t, \quad y=\sin 2 t, \quad 0 \leq t<\pi
$$

(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2}{3} \cot 2 t$.
(ii) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.
(iii) Show that the tangent to the curve at the point where $t=\frac{\pi}{6}$ has the equation

$$
\begin{equation*}
2 x+3 \sqrt{3} y=9 \tag{3}
\end{equation*}
$$

(iv) Find a cartesian equation for the curve in the form $y^{2}=\mathrm{f}(x)$.
7. Relative to a fixed origin, the points A and B have position vectors $\left(\begin{array}{c}-4 \\ 1 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}-3 \\ 6 \\ 1\end{array}\right)$ respectively.
(i) Find a vector equation for the line l_{1} which passes through A and B.

The line l_{2} has vector equation

$$
\mathbf{r}=\left(\begin{array}{c}
3 \\
-7 \\
9
\end{array}\right)+t\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)
$$

(ii) Show that lines l_{1} and l_{2} do not intersect.
(iii) Find the position vector of the point C on l_{2} such that $\angle A B C=90^{\circ}$.
8. $\mathrm{f}(x)=\frac{5-8 x}{(1+2 x)(1-x)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
(iii) State the set of values of x for which your expansion is valid.

